Upper limits for PH3 in the atmosphere of Mars

References

  1. Agee, C. B., Wilson, N. V., McCubbin, F. M., et al. 2013, Science, 339, 780 [Google Scholar]
  2. Akins, A. B., Lincowski, A. P., Meadows, V. S., & Steffes, P. G. 2021, ApJ, 907, L27 [Google Scholar]
  3. Alday, J., Wilson, C. F., Irwin, P. G. J., et al. 2019, A&A, 630, A91 [Google Scholar]
  4. Bains, W., Jurand Petkowski, J., Sousa-Silva, C., & Seager, S. 2019, Astrobiology, 19, 885 [Google Scholar]
  5. Bregman, J. D., Lester, D. F., & Rank, D. M. 1975, ApJ, 202, L55 [Google Scholar]
  6. Burgdorf, M. J., Orton, G. S., Encrenaz, T., et al. 2004, Adv. Space Res., 34, 2247 [Google Scholar]
  7. Elm, J., Myllys, N., & Kurtén, T. 2017, Mol. Phys., 115, 2168 [Google Scholar]
  8. Encrenaz, T., Greathouse, T. K., Marcq, E., et al. 2020, A&A, 643, L5 [Google Scholar]
  9. Fedorova, A. A., Montmessin, F., Korablev, O., et al. 2020, Science, 367, 297 [Google Scholar]
  10. Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. 2009, Icarus, 202, 543 [Google Scholar]
  11. Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., & Giuranna, M. 2004, Science, 306, 1758 [Google Scholar]
  12. Gellert, R., Rieder, R., Anderson, R. C., et al. 2004, Science, 305, 829 [Google Scholar]
  13. Giuranna, M., Viscardy, S., Daerden, F., et al. 2019, Nat. Geosci., 12, 326 [Google Scholar]
  14. Glindemann, D., Edwards, M., & Kuschk, P. 2003, Atm. Environ., 37, 2429 [Google Scholar]
  15. Glindemann, D., Edwards, M., & Schrems, O. 2004, Atm. Environ., 38, 6867 [Google Scholar]
  16. Glindemann, D., Edwards, M., Liu, J., & Kuschk, P. 2005a, Ecol. Eng., 24, 457 [Google Scholar]
  17. Glindemann, D., Edwards, M., & Morgenstern, P. 2005b, Environ. Sci. Technol., 39, 8295 [Google Scholar]
  18. Gordon, I. E., Rothman, L. S., Hill, C., et al. 2017, J. Quant. Spectr. Rad. Trans., 203, 3 [Google Scholar]
  19. Greaves, J. S., Richards, A. M. S., Bains, W., et al. 2020a, Nat. Astron., in press [arXiv:2009.06593[Google Scholar]
  20. Greaves, J. S., Richards, A. M. S., Bains, W., et al. 2020b, ArXiv e-prints [arXiv:2011.08176[Google Scholar]
  21. Greaves, J. S., Bains, W., Petkowski, J. J., et al. 2020c, ArXiv e-prints [arXiv:2012.05844[Google Scholar]
  22. Irion, F. W., Gunson, M. R., Toon, G. C., et al. 2002, Appl. Opt., 41, 6968 [Google Scholar]
  23. Knutsen, E. W., Villanueva, G. L., Liuzzi, G., Crismani, M. M. J., et al. 2021, Icarus, 357 [Google Scholar]
  24. Korablev, O., Montmessin, F., Trokhimovskiy, A., et al. 2018, Space Sci. Rev., 214, 7 [Google Scholar]
  25. Korablev, O., Vandaele, A. C., Montmessin, F., et al. 2019, Nature, 568, 517 [Google Scholar]
  26. Korablev, O., Olsen, K. S., Trokhimovskiy, A., Lefèvre, F., et al. 2021, Sci. Adv., 7, eabe4386 [Google Scholar]
  27. Krasnopolsky, V. A., Maillard, J. P., & Owen, T. C. 2004, Icarus, 172, 537 [Google Scholar]
  28. Lincowski, A. P., Meadows, V. S., Crisp, D., et al. 2021, ApJ, 908, L44 [Google Scholar]
  29. McCubbin, F. M., & Nekvasil, H. 2008, Am. Min., 93, 676 [Google Scholar]
  30. Montmessin, F., Korablev, O. I., Trokhimovskiy, A., et al. 2021, A&A, accepted [Google Scholar]
  31. Mumma, M. J., Villanueva, G. L., Novak, R. E., et al. 2009, Science, 323, 1041 [Google Scholar]
  32. Olsen, K. S., Lefèvre, F., Montmessin, F., et al. 2020, A&A, 639, A141 [Google Scholar]
  33. Olsen, K. S., Lefèvre, F., Montmessin, F., et al. 2021a, Nat. Geosci., 14, 67 [Google Scholar]
  34. Olsen, K. S., Trokhimovskiy, A., Montabone, L., et al. 2021b, A&A, 647, A161 [Google Scholar]
  35. Rieder, R., Gellert, R., Anderson, R. C., et al. 2004, Science, 306, 1746 [Google Scholar]
  36. Schwieterman, E. W., Kiang, N. Y., Parenteau, M. N., et al. 2018, Astrobiology, 18, 663 [Google Scholar]
  37. Seager, S., Bains, W., & Petkowski, J. J. 2016, Astrobiology, 16, 465 [Google Scholar]
  38. Seager, S., Petkowski, J. J., Gao, P., et al. 2020, Astrobiology, 2244, 21 [Google Scholar]
  39. Sen, B., Toon, G. C., Blavier, J.-F., Fleming, E. L., & Jackman, C. H. 1996, J. Geophys. Res., 101, 9045 [Google Scholar]
  40. Snellen, I. A. G., Guzman-Ramirez, L., Hogerheijde, M. R., Hygate, A. P. S., & van der Tak, F. F. S. 2020, A&A, 644, L2 [Google Scholar]
  41. Sousa-Silva, C., Seager, S., Ranjan, S., et al. 2020, Astrobiology, 20, 235 [Google Scholar]
  42. Thompson, M. A. 2021, MNRAS, 501, L18 [Google Scholar]
  43. Trokhimovskiy, A., Perevalov, V., Korablev, O., et al. 2020, A&A, 639, A142 [EDP Sciences] [Google Scholar]
  44. Trompet, L., Robert, S., Mahieux, A., et al. 2021, A&A, 645, L4 [Google Scholar]
  45. Truong, N., & Lunine, J. I. 2020, ArXiv e-prints [arXiv:2009.11904[Google Scholar]
  46. Vago, J., Witasse, O., Svedhem, H., et al. 2015, Sol. Syst. Res., 49, 518 [Google Scholar]
  47. Vandaele, A. C., Lopez-Moreno, J.-J., Patel, M. R., et al. 2018, Space Sci. Rev., 214, 80 [Google Scholar]
  48. Villanueva, G., Cordiner, M., Irwin, P., et al. 2020, Nat. Astron., submitted [arXiv:2010.14305[Google Scholar]
  49. Webster, C. R., Mahaffy, P. R., Atreya, S. K., et al. 2015, Science, 347, 415 [Google Scholar]
  50. Wunch, D., Toon, G. C., Blavier, J. L., et al. 2011, Phil. Trans. R. Soc. A, 369, 2087 [Google Scholar]

All Figures

Fig. 1.

Spectral range of ACS MIR containing PH3 absorption features. Panel a: modelled transmission spectrum contributions from 10 ppbv of PH3 from a 20 km tangent height. Panel b: single spectra extracted from orders 142–145 for 12 consecutive tangent heights (2–26 km) in the lower atmosphere of Mars using ACS MIR secondary grating position 9. All visible absorption lines result from CO2, which also impacts the broad continuum that decreases transmission towards lower wavenumbers, where the CO2ν3 vibration-rotation band is centred. Boxes in panel a indicate the spectral windows covering PH3 absorption features in order 143 used to determine upper limits.

 

 

Fig. 2.

HITRAN 2016 line strengths for the ν3 vibration-rotation band of CH4 (panel a) and the ν3 vibration-rotation band of PH3 (panel b). The spectral ranges of important ACS MIR diffraction orders are indicated in grey.

 

 

Fig. 3.

Example ACS MIR spectra and upper limits for PH3. Panel a: normalized spectra for diffraction order 143 extracted from a single detector frame observed near 13 km tangent height. The lines in various shades of grey are the individual normalized spectra, the black line is a mean spectrum, and the dashed and solid purple lines are best-fit lines to the mean spectrum with two fixed quantities of PH3, 5 and 10 ppbv, respectively. Panel b: 1σ detection limits derived from non-normalized spectra (shades of grey) and from the mean spectrum (black). The standard error computed from all 12 sets of spectra is also shown, as in Fig. 4. The detection limit derived near 13 km is 0.5 ppbv for the entire occultation and 1.5–2.5 ppbv for the individual extracted detector rows.

 

 

Fig. 4.

Vertical profiles of the standard error of the weighted mean for 192 ACS MIR solar occultations observed between Ls = 140–350° in MY 34 and 35. The lines are coloured by the Gaussian kernel density estimate for the entire dataset, with the highest density of data appearing as orange and yellow.

 

 

 

Be the first to comment

Leave a Reply

Your email address will not be published.


*